Inverse Kinematics with DH
To calculate inverse kinematics using either MATLAB or Python based on a DH (Denavit-Hartenberg) parameter list and the final position, the general approach involves solving the nonlinear equations that relate joint angles to the end-effector's position and orientation. Here’s how you can approach this in both MATLAB and Python:
1. DH Parameters and Inverse Kinematics Basics
Inverse kinematics aims to find joint angles (θ1, θ2, ..., θn) given the desired end-effector position and orientation. In the DH parameter method, each link of the manipulator is described by four parameters:
- θ: Joint angle (for revolute joints)
- d: Link offset
- a: Link length
- α: Link twist
For a serial manipulator, the transformation from the base to the end-effector is obtained by multiplying the individual transformations for each joint, constructed from the DH parameters.
The forward kinematics is: \(T_{0,n} = T_1 \cdot T_2 \cdot ... \cdot T_n\) Where each \(T_i\) is the transformation matrix for joint i, constructed using the DH parameters.
2. Inverse Kinematics Steps
Inverse kinematics involves solving the equation: \(T_{0,n}(\theta_1, \theta_2, ..., \theta_n) = T_{desired}\) Here, \(T_{desired}\) is the final position and orientation of the end-effector, and we solve for the joint angles.
3. MATLAB Implementation
MATLAB has built-in functions to handle inverse kinematics in robotics, particularly with the Robotics System Toolbox.
Method 1: Using Robotics Toolbox (If installed)
% Define robot using DH parameters
L(1) = Link([theta1, d1, a1, alpha1]);
L(2) = Link([theta2, d2, a2, alpha2]);
% Continue for other links...
% Create robot model
robot = SerialLink(L);
% Define desired end-effector position and orientation (4x4 matrix)
T_desired = [R p; 0 0 0 1]; % R is rotation matrix, p is position vector
% Solve inverse kinematics
q = robot.ikine(T_desired);
Method 2: Custom Calculation (if toolbox is not available)
% Define the DH parameters
theta = [theta1, theta2, theta3]; % Initial guesses
d = [d1, d2, d3];
a = [a1, a2, a3];
alpha = [alpha1, alpha2, alpha3];
% Define desired end-effector position and orientation
T_desired = [R p; 0 0 0 1];
% Solve using optimization (fmincon, fsolve, etc.)
options = optimoptions('fmincon', 'Display', 'off');
q = fmincon(@(q) norm(forward_kinematics(q) - T_desired), theta0, [], [], [], [], [], [], [], options);
% Define forward kinematics
function T = forward_kinematics(q)
% Compute transformation using DH parameters for given q
% Return T (4x4 matrix)
end
4. Python Implementation
In Python, you can use libraries like SymPy
for symbolic math or SciPy
for numerical solving. If you're using robotics libraries, pybullet
, Klampt
, or numpy
are helpful.
Method 1: Using numpy
and SciPy
import numpy as np
from scipy.optimize import minimize
# Define DH parameters
d = [d1, d2, d3]
a = [a1, a2, a3]
alpha = [alpha1, alpha2, alpha3]
# Define forward kinematics function
def forward_kinematics(q):
# Calculate transformation matrix based on DH parameters and q (joint angles)
T = np.eye(4)
for i in range(len(q)):
T_i = np.array([
[np.cos(q[i]), -np.sin(q[i]), 0, a[i]],
[np.sin(q[i]) * np.cos(alpha[i]), np.cos(q[i]) * np.cos(alpha[i]), -np.sin(alpha[i]), -np.sin(alpha[i]) * d[i]],
[np.sin(q[i]) * np.sin(alpha[i]), np.cos(q[i]) * np.sin(alpha[i]), np.cos(alpha[i]), np.cos(alpha[i]) * d[i]],
[0, 0, 0, 1]
])
T = np.dot(T, T_i)
return T
# Objective function to minimize
def objective(q, T_desired):
T_current = forward_kinematics(q)
return np.linalg.norm(T_current - T_desired)
# Initial guess for joint angles
q_initial = np.array([theta1, theta2, theta3])
# Desired end-effector position and orientation (4x4 matrix)
T_desired = np.array([[R p],
[0, 0, 0, 1]])
# Solve inverse kinematics
result = minimize(objective, q_initial, args=(T_desired,))
q_solution = result.x
Method 2: Using SymPy
for Symbolic Solution
import sympy as sp
# Define symbolic variables
theta1, theta2, theta3 = sp.symbols('theta1 theta2 theta3')
# Define DH parameters
d = [d1, d2, d3]
a = [a1, a2, a3]
alpha = [alpha1, alpha2, alpha3]
# Define forward kinematics symbolically
def forward_kinematics_sym(theta):
T = sp.eye(4)
for i in range(len(theta)):
T_i = sp.Matrix([
[sp.cos(theta[i]), -sp.sin(theta[i]), 0, a[i]],
[sp.sin(theta[i]) * sp.cos(alpha[i]), sp.cos(theta[i]) * sp.cos(alpha[i]), -sp.sin(alpha[i]), -sp.sin(alpha[i]) * d[i]],
[sp.sin(theta[i]) * sp.sin(alpha[i]), sp.cos(theta[i]) * sp.sin(alpha[i]), sp.cos(alpha[i]), sp.cos(alpha[i]) * d[i]],
[0, 0, 0, 1]
])
T = T * T_i
return T
# Solve symbolically
T_desired = sp.Matrix([[R p], [0, 0, 0, 1]])
q = sp.nsolve(forward_kinematics_sym([theta1, theta2, theta3]) - T_desired, [theta1, theta2, theta3], [theta1_0, theta2_0, theta3_0])
Summary of Steps:
- Define the DH parameters for your robot.
- Set up the forward kinematics function.
- Define the desired end-effector position and orientation.
- Use a solver (e.g.,
fmincon
in MATLAB orminimize
in Python) to compute the joint angles that match the desired end-effector position.