Skip to content

Inverse Kinematics with DH

To calculate inverse kinematics using either MATLAB or Python based on a DH (Denavit-Hartenberg) parameter list and the final position, the general approach involves solving the nonlinear equations that relate joint angles to the end-effector's position and orientation. Here’s how you can approach this in both MATLAB and Python:

1. DH Parameters and Inverse Kinematics Basics

Inverse kinematics aims to find joint angles (θ1, θ2, ..., θn) given the desired end-effector position and orientation. In the DH parameter method, each link of the manipulator is described by four parameters:

  • θ: Joint angle (for revolute joints)
  • d: Link offset
  • a: Link length
  • α: Link twist

For a serial manipulator, the transformation from the base to the end-effector is obtained by multiplying the individual transformations for each joint, constructed from the DH parameters.

The forward kinematics is: \(T_{0,n} = T_1 \cdot T_2 \cdot ... \cdot T_n\) Where each \(T_i\) is the transformation matrix for joint i, constructed using the DH parameters.

2. Inverse Kinematics Steps

Inverse kinematics involves solving the equation: \(T_{0,n}(\theta_1, \theta_2, ..., \theta_n) = T_{desired}\) Here, \(T_{desired}\) is the final position and orientation of the end-effector, and we solve for the joint angles.

3. MATLAB Implementation

MATLAB has built-in functions to handle inverse kinematics in robotics, particularly with the Robotics System Toolbox.

Method 1: Using Robotics Toolbox (If installed)

% Define robot using DH parameters
L(1) = Link([theta1, d1, a1, alpha1]);
L(2) = Link([theta2, d2, a2, alpha2]);
% Continue for other links...

% Create robot model
robot = SerialLink(L);

% Define desired end-effector position and orientation (4x4 matrix)
T_desired = [R p; 0 0 0 1];  % R is rotation matrix, p is position vector

% Solve inverse kinematics
q = robot.ikine(T_desired);

Method 2: Custom Calculation (if toolbox is not available)

% Define the DH parameters
theta = [theta1, theta2, theta3]; % Initial guesses
d = [d1, d2, d3];
a = [a1, a2, a3];
alpha = [alpha1, alpha2, alpha3];

% Define desired end-effector position and orientation
T_desired = [R p; 0 0 0 1];

% Solve using optimization (fmincon, fsolve, etc.)
options = optimoptions('fmincon', 'Display', 'off');
q = fmincon(@(q) norm(forward_kinematics(q) - T_desired), theta0, [], [], [], [], [], [], [], options);

% Define forward kinematics
function T = forward_kinematics(q)
    % Compute transformation using DH parameters for given q
    % Return T (4x4 matrix)
end

4. Python Implementation

In Python, you can use libraries like SymPy for symbolic math or SciPy for numerical solving. If you're using robotics libraries, pybullet, Klampt, or numpy are helpful.

Method 1: Using numpy and SciPy

import numpy as np
from scipy.optimize import minimize

# Define DH parameters
d = [d1, d2, d3]
a = [a1, a2, a3]
alpha = [alpha1, alpha2, alpha3]

# Define forward kinematics function
def forward_kinematics(q):
    # Calculate transformation matrix based on DH parameters and q (joint angles)
    T = np.eye(4)
    for i in range(len(q)):
        T_i = np.array([
            [np.cos(q[i]), -np.sin(q[i]), 0, a[i]],
            [np.sin(q[i]) * np.cos(alpha[i]), np.cos(q[i]) * np.cos(alpha[i]), -np.sin(alpha[i]), -np.sin(alpha[i]) * d[i]],
            [np.sin(q[i]) * np.sin(alpha[i]), np.cos(q[i]) * np.sin(alpha[i]), np.cos(alpha[i]), np.cos(alpha[i]) * d[i]],
            [0, 0, 0, 1]
        ])
        T = np.dot(T, T_i)
    return T

# Objective function to minimize
def objective(q, T_desired):
    T_current = forward_kinematics(q)
    return np.linalg.norm(T_current - T_desired)

# Initial guess for joint angles
q_initial = np.array([theta1, theta2, theta3])

# Desired end-effector position and orientation (4x4 matrix)
T_desired = np.array([[R p],
                      [0, 0, 0, 1]])

# Solve inverse kinematics
result = minimize(objective, q_initial, args=(T_desired,))
q_solution = result.x

Method 2: Using SymPy for Symbolic Solution

import sympy as sp

# Define symbolic variables
theta1, theta2, theta3 = sp.symbols('theta1 theta2 theta3')

# Define DH parameters
d = [d1, d2, d3]
a = [a1, a2, a3]
alpha = [alpha1, alpha2, alpha3]

# Define forward kinematics symbolically
def forward_kinematics_sym(theta):
    T = sp.eye(4)
    for i in range(len(theta)):
        T_i = sp.Matrix([
            [sp.cos(theta[i]), -sp.sin(theta[i]), 0, a[i]],
            [sp.sin(theta[i]) * sp.cos(alpha[i]), sp.cos(theta[i]) * sp.cos(alpha[i]), -sp.sin(alpha[i]), -sp.sin(alpha[i]) * d[i]],
            [sp.sin(theta[i]) * sp.sin(alpha[i]), sp.cos(theta[i]) * sp.sin(alpha[i]), sp.cos(alpha[i]), sp.cos(alpha[i]) * d[i]],
            [0, 0, 0, 1]
        ])
        T = T * T_i
    return T

# Solve symbolically
T_desired = sp.Matrix([[R p], [0, 0, 0, 1]])
q = sp.nsolve(forward_kinematics_sym([theta1, theta2, theta3]) - T_desired, [theta1, theta2, theta3], [theta1_0, theta2_0, theta3_0])

Summary of Steps:

  1. Define the DH parameters for your robot.
  2. Set up the forward kinematics function.
  3. Define the desired end-effector position and orientation.
  4. Use a solver (e.g., fmincon in MATLAB or minimize in Python) to compute the joint angles that match the desired end-effector position.